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I A NONLINEAR UNIAXIAL INTEGRAL CONSTITCJTIVE EQUATION INCORPORATING

RATE EFFECTS , CREEP, AND RELAXATION

i E . P . Cernocky and E . Krempl
I Department of Mechanical Engineering,

Aeronautical Engineering & Mechanics
Rensselaer Polytechnic Institute

I Troy, New York 12181

I ABSTRACT

I A previously proposed first order nonlinear differential equation for

I 
uniaxial viscoplasticity, which is nonlinear in stress and strain but linear in

stress and strain rates, is transformed into an equivalent integral equation.

I The proposed equation employs total strain only and is symmetric with respect to

the origin and applies for tension and compression. The limiting behavior for

large strains and large times for monotonic, creep,and relaxation loading is

investigated and appropriate limits are obtained . When the equation is special-

ized to an overstress model it is qualitatively shown to reproduce key features

I of viscoplastic behavior. These include: initial linear elastic or linear

viscoelastic response ; immediate elastic slope for an instantaneous change in

I strain rate; normal strain rate sensitivity and nonlinear spacing of the

stress—strain curves obtained at various strain rates; primary and secondary

creep and relaxation such that the creep (relaxation) curves do not cross.

I 
Isochronous creep curves are also considered. Other specializations yield

wavy stress-strain curves and inverse strain rate sensitivity. For cyclic

I loading the model must be modified to account for history dependence in the

sense of plasticity.
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Introduction

The subject of constitutive equations for metals is presently very active.

Various approaches are being pursued which are intended to improve on the body

of knowledge commonly referred to as plasticity . Although there are open

questions regarding the foundation of plasticity in continuum mechanics theory

the recent activity was mainly prompted by discrepancies between the observed

metal deformation behavior and the predictions of plasticity theories.

A school of thought proposes new ideas in the framework of classical

plasticity Ii, 2]; another group recognizes elastic and inelastic strains which

are rate dependent [3]. Some motivate their approach by material science

considerations 14—61. Theories are also cast in terms of two sets of state

variables evolving according to separately postulated growth laws. One set is

responsible for rheological effects, the other for structural effects [7,8].

In the endochronic theories [9, 10] a nondecreasing parameter is used in

an integral or di f f erential formulation and it has been shown that plasticity

type phenomena can be reproduced without decomposition of the strain into

elastic and plastic parts.

In previous publications [11,121 we have given operational definitions for

aging, rate—dependence and history dependence in the sense of plasticity and

have shown that not all postulated equations can reproduce what are commonly

considered plasticity effects. We have further argued that plasticity ef fects

are observed due to the internal changes in the material affected by the loading.

Accordingly we postulated that a measure of internal change ‘separate from

‘ 
repositories for rate dependence and aging) should be introduced in a consti-

tutive equation for metals . In [13] the properties of a continuously varying

structure parameter together wi th an integral constitutive equation were in-

vestigated and it was shown that typical plasticity responses (cross—hardening,

II



2.

cyclic hardening, Bauschinger ef fect) could be modelled . However, it was

necessary to solve an integral equation to obtain the growth for the struc-

ture parameter .

A discontinuou s growth law for the structure parameters was proposed

in fill. It was argued that in a continuum approach plasticity effects can

only be recognized after unloading and reloading. According to this view

plasticity and viscoplasticity are indistinguishable from nonlinear elasticity

and nonlinear viscoelasticity, respectively as long as we consider only loading

(see [111 footnote on p.75).

Here a previously proposed differential constitutive equation is repre-

sentE.d as an equivalent integral equation. The integral formulation permits

the study of the limiting behavior unde r large strains and large times. We

demonstrate by qualitative arguments and by numerical experiments tha t the

proposed “equation of state” can represent many key features of viscoplastic

behavior as long as there is no substantial reversed loading involved . For

reversed and cyclic loading the proposed nonlinear viscoelasticity law must

be extended by the introduction of new origins and by updating the material

parameters [11, 14]. A three-dimensional formulation of the present theory

is given separately.

The Proposed Constitutive Equation

For the uniaxial case we previously proposed (14, 151

+ g [ cJ  a+k [C,e]cT (1)

as the simplest constitutive equation capable of reproducing rate sensitivity ,

creep and relaxation. In the above , ~ denotes the axial component of the

Cauchy stress (true stress) , € is the engineering strain , and c + 1  is the axial

component of the deformation gradient. The square brackets following a

I
. - —- -- .. .—.-- . - .—,~~ —- ._ .

~~~~~~~ —~~~~~~~~~~~~
_ _ .—.

~~~~
.—— .. .,— ———- —
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symbol denote “function of” and the dot over a symbol denotes the material time

derivative. Equation (1) is valid for infinitesimal and finite strain. The

functions ml ] and k E  I are positive, bounded and are even functions for

both variables taken together, i.e.

mla,c] = ml— c ,—€] .
~

and 1~ 
(2)

k[a,€] = k[—o ,—€]

The function g [  I is odd. The functions ml 1 , k[ I and gE ] are assumed to

have continuous derivatives.

The above stated requirements are derived from considering the qualita-

tive behavior of materials in tension and compression and the responses pre-

dicted by (1). For the actual description of a particular material, the three

material functions m[ 1 , k[ 3 , g [  ] must be determined from experiments [16).

Integral Formulation

The constitutive equation (1) can be expressed as the following equiva-

lent integral equations

~~[T] = g[c[T]1 + ~~~~~~~~~~~~~~~~~ -

or 

exp(_ S kfa [xJ ,c Ix]]) ~~[T] dT (3)

€ (t] = $ {&[.r]k [ I ÷ ~~fli} exp(_ $ g (€ ts] ] 
ds) dT (4)

m l ] ml  I €ls]mla [sI,e [s]I
0 T

where we have assumed o(t = 0) = 0 and € (t = 0) = 0 . In the above , ‘ denotes the

derivative of a function with regard to its argulnent*.

* In the case of discontinuous strain (stress) rates we propose (3) and (4) as
J fundamental forms.

I
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It does not appear to be possible to represent (1) by an equation of the

type

~~[T] = $ G[€ [T], t— T]ê[T] dT (5)

or 
€ [t] =~~~~J[a[T], t- 7]~~[T] aT . (6)

Equations (3) and (4) simplify to the regular convolution integrals of linear

viscoelasticity if g[e] is linear in € and m l I and k[ I are constants.

Behavior in Tensile Tests

We now use (3) * to simulate a tensile test under constant strain rate

€ = 0’ such that

€ =~~ t .  ( 7)

We designate the response, i.e., the solution of (3) subject to (7) by

~ l€ ] = &(€ ;0 ’I  = a(t]  
~~~~~~~ 

(8)

and ~ is considered a parameter.

Substitution of (7) into (3) using (8) yields

&(€;~ ] =& [€ ]  g[€J + S Lm [x]
~~

J 
- g ’[xJ ]exp(_ S k(&(:I 51)dx . (9)

o k[cT[x],xJ x

For extremely slow loading ~ 
-, 0; we obtain from (9)

â[€;0] = lim & [e;cy l  = g[c] (10)
~~~-4 0

and for extremely fast loading ~~ 
-‘ 

~~, 
(9) furnishes

lim &[€ ;~~] = ~~~ t~T t x] , xI dx.  (11)
~ 

k [cT lx] , x)

* Appendix I shows the parallel development for (4)

I
I 

- .  .. - -. . - , r - - _ _ _ _ _  _ _ _ _ _ _ _ _ _ _
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From (10) we see that g[c] furnishes the stress—strain curve which is

obtained for extremely slow loading. 

* 

We designate the stress-strain relation-

ship for infinitely fast loading by g (€I. From (11) we have for infinitely

fast loading

ml& [€J , [ci] 
= (12)

kt~ (cI ,E€ II

The relation (12) between ml I and k [  I is only required for fast loading .

However , as a useful and physically motivated simplification of the theory,

we propose (12) to be true for all loadings. Consequently (9) is rewritten as

& [€ ;~~] & i€j  g l€ ] + 
~ 

{‘ rx~ 
_ g ’[x]}exp(_ ~ 

~ k [& [sJ , s]) 
dx . (13)

Using (12) we can also rewrite (1) , (3) and (4) accord ing ly.

From (13) we see immediately that for every € � 0 and ~ � 0,

*g[c]  � ~ [€;~ I � g E e ]  (14 )

provided g ’le] — g ’[€I � 0. Therefore, the response for 0 � o~ � is between

the extremely fast and the extremely slow response. Moreover for 0’2 > > 0

we have for every positive €

� a [€ ;o!
1

] ( 15)

so that the stress—strain curve for the fast rate is above the curve for the

slow rate , as shown in Fig.1. The above behavior reflected in the relations

(14) and (15) would be reversed by setting ~ ‘[€] - g ’leI � 0 for € � 0 .

For o’ � 0 the responses are symmetric with respect to the origin by

virtue of (2) and the fact that g is odd.

Diffe rentiation of (13) with respect to € yields

= — 

0’k (& [€] , €]  Sc;’xJ _ g ’(x] )exp(_ 
~ k (& [si , sI ) dx .  (16)

I
I

____
-_ _ _  -n-- - 

. . 
-—---— - —~ -,__ a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -r --. — -—--. — .— -
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Performing the limits for 0’ -. 0 and 0’ -. in (16 ) we obtain results consistent

with (10) and (11) , (12), respectively. Moreover we see that

*1[e = 0 ]  = g  to] (17)

for all i. All the curves in Fig.l have therefore one initial common slope
*equal to the initial slope of g irrespective of the loading rate.

Behavior at Large Strains

We are interested in the behavior of our model at large strains in a

tensile test. To this end we investigate (16) for the mathematical idealiza-

tion e -. 
~ for 0’ = const.

*. The resulting indeterminate expression is

resolved (see Appendix II) to obtain

lim — = g [°‘] (18)

I ~~I ± 1for all finite 0’ and provided g [co], g [~x~] and k[co,co] exist and are finite

This is a very strong result requiring that all response curves become parallel

to each other for large strains. Figure 2, which represents the results of

the numerical integration of (13), demonstrates this behavior. For convenience

k was selected to be constant. Initially linear elastic behavior is obtained

* *as g’[O] =g ’[O]. The representation of the g and g functions follows the

development of the y(x) functions using the second kernel of [22].

$ 
While these mathematical limits may seem unrealistic they are indeed useful

because the solutions of the equations are rapidly asymptotic to these limits;
see Fig. 2 .

** Throughout this paper we consider only k-functions which are bounded. In
the case where k(cT, €1 = k [a — f (€ ) ]  for some function f , we similarly require that
k (m] be f inite .

.. — r . —  .. 
~~~~~~ -~— — —  — ... ,. I_a.. * .~. 

..—
~~~~ 

.. . . ._.. - j—.-— __________________ - —. - — ...
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Performing the limit for (13) in a similar manner we obtain

*lim (o’—g lc] ) = (g ’fco] _ g ’[ccj )~ k [a [~ ],~~I . (19)

The limiting value of (&—gl€ }) is finite and is determined by the strain rate

I *,
and the values of the functions k[ I , g F 1 , g f I at infinity.

The relations (18) and (19) were derived for constant strain rate loading.

By starting with (3) and investigating the limit for t -‘ the following

expressions result:

lim &[t ) = g ’[€ [co]]~~[co] (20)

and
(2 1)

provided ~~[ co]  together with the limits of the other functions exist and are

finite.

If € [ co]  = the expressions (20) and (21) are identical to (18) and (19),

respectively, the only exception being that ~ [cJ , the response to constant

strain rate forcing, appears in (18) and (19) whereas the response in (20)

and (21) is alt]. Therefore the responses for large strain and time under

variable ~ become identical to the ones under constant ~ 
= ~ provided ~ [ co] =

and it is not necessary to have always constant strain rate on 0 � t � co to

arrive at lim = g’[e[co]].
t—.~ 

€

Instantaneous Change of Strain Rate

We consider two tensile tests with respective strain rates 0’2 and 0’l 
with

> > 0. Then from previous arguments we know that 
~~

[c ,0’2] � ~~[€ ,c~1
] .

Suppose instead that we initially load with and at some time t
o 

and associ-

ated strain € we instantaneously change the strain rate from to as

shown in Fig.3. We call &
A [€1 the response to 

~2 
and &

B l€l the response to

followed by 0’2 as shown in Fig.3.



8.

First we investigate the&vs. € relationship. For € � €~ , &~ E€ ] � &
B [€]  by

previous arguments . For € � € the re~~ective responses are

&A E € ]  g [€ ] + 

~ 
(~~‘lxI _ g ’lx])exp(_ 

~~ 5 dS ) dx (22 )
2 x k [aA Ls] , s]

and
€ €

& [€1 =g(€] + $ (g’[x] _ g I [xI )exp(_ 
~~ 

$ ds ) dxB 
€ x k[a

B
[s] , s]

+ (&~ lc 0
] _ g l€ 0])exp (_ 

0’
~ ~~

k [&B
[:] , s] ) . (23)

where for € � €~~~, aB~~ 1 = a~~[0’2t (0’2 -0 ’1
) t ]  = a(t I .

For large strains (€ -‘ co)we obtain from (22)

lim (&
A 

— g[€] ) = (g ’ [co ] — g
lfce] I0’2

k[&~~[co] ,cO] (24)

and from (23 )

lim (&
B 

- g [€I) = (;I [co] - g’lco] }~ 2
k[& fco] , co] . (25)

Unless k[&A [
~

] , co] = k[&
B

IcCJ ,coI the two paths on the & - €  plane will not coin-

cide for large values of strain. In both cases the slopes approach g ’[co] as

€ -. co~ We see therefore that the two curves, i.e., O~~ and &B, become parallel

at large strains.

The question arises whether the path can be crossed by path 
~B

’ From

(1) , (12) and the chain rule we obtain

d& 
= g’[€] — 

3—g [e] 
(26)

kta[€I ,€ Ia’

From Eq. (26) we see that for a given stress, strain, and strain rate ,

there exists a unique slope irrespective of the prior history. Since cross-

ing of the cY
A 

and 
~B curves would require a nonunique slope at the crossing

I
I

- .-—.-—— -~~~~~~~~~— . ~~-.----.- . —.= ---—~~~~~~~~~~~~~~~~~~~~ =~~-.--.- - . ---- ---- - - --.—~~~~~~~~~~
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point, the condition necessary for crossing cannot be met and &.~ � always ;

the two curves can never cross

To investigate the behavior at large times’ we start from (3) and obtain

(note a
A 

and a~ are the responses in a-time coordinates)

*1 Iu r n  (a
A 

— g[0’.,t]) = (g [co] — g [c o ] ) 0 ’.,k [a,~ [c~] ,coJ ( 27 )
t-,

and

u r n  (a — g [ ~ t +0’ (t—t ) ] )  = (~~~~ [co] _ g ’[coJ)~ k[a [~
] ,~~

] . (28)B 0 0 B

If g’[°’] = E
s then we have

lirn (aA
_ a

B + E StO (02 _ 0 ’l
) ) =  (g I f c o ] _ E

5)0 ’2 (k[a~~[co] , c o ] _ k[a~~[co] , c o I ) .  (2 9)

Even if the right—hand side of (29) would be zero, a7~[I  a~~f ]  # 0~ i.e., the

graphs of a~ vs. time and O~3 vs. time do not coincide. The corresponding

a — c  graphs, however , may eventually coincide as can be seen from (24) and (25).

So far we have only considered > 
~

‘l 
> 0. The previous arguments can

be extended to the case of 0’l > > 0 with the result that the curve for

vs. € will approach &
A vs. € from above but will never cross the curve.

Change of Slope

The slopes at point A in Fig.3 approached from the lef t and from the

right are determined from (16) or (26) to be

d&
B *1 

&
B
[€ I ~~g [€01

lirn _ — = g 1€ I — —
~~ (30)d€ ~ 0’k(a [ c 1 € I

0 1 B o ’ o

and

* / 
&
B
[€] - gEe ]

1irn ~ -
~~~~ — = g [€ I — (31)

0 
0’

2
k ( a

B
(e

O
l , c

O
l

This argument is due to Dr. H. Moon.

— - r.n-.----..-.. --ew.--- —- . - - - ~a.—’ - - - -~~ ~  
- ~~ —. ----— - — -
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so that the slopes differ by

d& 0 ’ - -0’ & [ € ] - g [€ ]B 
~~~~~~~~~~ 

B 
~~~~~~~~~~~~ 

= 
2 1 B ~ . (32)o de 0 a20’l k EcYB Ec O] , € 3

We obtain therefore an instantaneous change in the slope of the a- € curve as

the strain rate is changed instantaneously from to 0’2. For > 0’u the
daB + 

daB -

right—hand side of (32) is positive so that -
~~~~

— (€ = € )  > -
~~~~

— (c = c ). For

> > 0 the opposite is true.

Behavior at Small Stresses (Strains)

Here we are interested in the behavior around the origin. Suppose that

for J e
~ 

� €
a
(€
a 

> 0) the function: g and g can be approximated by g [€1 =E€

(E is Young’s Modulus ) and gEe] Ee and that mE I and k [ I are constant for

all €~ � €a and associated Ia~ 
� a (a > 0) and equal to m

a 
and k , respect-

ively. Then from (3) for €
~ ~t

art] = Ec + (B — E)exp(_ j~
_ (t_T)) 

~~dT . (33)

* *For E > E (33) is the standard linear solid of viscoelasticity . For E = E

initial linear elastic behavior is reproduced on €~ � € a~ even for nonconstant

m and k. These two models are important representations of solids and can be

easily obtained from (1) just by constructing the coefficient functions

appropriately [22].

Creep and Relaxation

We use Eq. (3) to compute the stress response in a relaxation test where

the strain is increased to some value and then kept constant such that

= 0. We assume the strain history to be given by

- —-~~~~*-— - ~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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0 � t < t  with € [ t ] = eo o 0

t � t
0

where ~ [t] is some smooth function of time. From (3), using (12 ) , we obtain

for the relaxation stress a for t � t
R 0

a
R
EtI = g[€]+ (exp - S kr a R (x] , € O ]) (a

R
[€
o
] -

where to T

a
R
[€ ] —g [€ ] = $ [‘[€~~r)] 

_ g I
[€ (T)I~~exp{~~ k[a

R
(x] ,c [x]]}~~

T
~~

T

Alternatively if e [t] = € h It - t i  and ~ [t] = € 6 [t — t ]  where h[tI and

6[T ] are the step function and the Delta function, respectively, i.e., if we

consider an instantaneous loading from zero to €~~ at time t
o 

we obtain f rom (3) ,

for t � t
o, 

respectively,

a6[tI g[€ ] ÷ [ [ € ] -g(€ ]) exp - k[a
5
[xJ ,€ ]  

(35)

where a
6 
It] is the relaxation stress due to the impulsive strain input.

Differentiation of (34) and (35) shows that the relaxation rate is always

negative or zero provided g’— g ’ � 0. For large t imes ~ 
-. co, a[t-.co] =g [c ]

for both (34) and (35). The curve g (€] is therefore not only the slow loading

curve but also the terminal curve of all relaxation tests.

From (35) we see that the impulsive stress relaxation starts at t=t
0

from g l€ ] , i.e., from the curve traced out in the infinitely fast constant
strain rate load ing . If the loading up to e

~ 
is smooth, such as by constant

strain rate, then we observe from (34) that the relaxation starts from a point

on the curve traced out in the constant strain rate test.

- - ., -, - .. .-.... . ~~~-, _——--- -.- - . ..- —.-—— - - ---__________________
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The decrease in stress during the relaxation test is controlled by the

function kE .]. We may therefore call it the relaxation function. To demon-

strate the effect of the function k on relaxation behavior we have computed

the relaxation from a point on g in Fig.4. Curve 1 corresponds to con-

stant k and (34), (35) are linear in stress. For curve 2 k=kla-g [eI] as in

Fig.l0 so that (34) and (35) are nonlinear in stress. In Fig.4 the time

scale depends upon the time scale used for k; if k is given in units of hours

then the abscissa is measured in terms of hours.

Appendix III gives a discussion of the creep equation obtained from (4).

A comparison of (34) with the corresponding creep equation (All) shows that

the exponential decay in a creep test is controlled by ml I , g (  I and e f

and involves a complicated interaction of these quantities. Although creep

and relaxation show an exponential type of decay, their detailed evolution

is quite different.

Spacing of Creep and Relaxation Curves

Consider a series of creep (relaxation) tests performed at an increasing

sequence of constant stress (strain) values ; we require that the resulting

curves of strain vs. time (stress vs. time ) and of strain rate vs. time

(stress rate vs. time) are nonintersecting as is usually the case with actual

test results. Further we require that any two curves c2[tI and e 11t1 , (a 2 It]

and a
1
[tJ ) associated with two constant stresses a

2 > a1 (constant strains

> €~ ) satisfy the condition c
2

[t] � €
1
[t] for any time t (a2 It ] � a1l t ] )

and that ~2
[t] � ~~~[t ] (~ 2

[t] � &1It I ) .  These conditions re’~~ire that

0 and � 0 (36)

I
--.—- _ _ _ _.;

~~
-
~~~~~~~~~~~_____,_.-.

~ 
---  -

~~
- .--- .——  — --— -- - 

~~~~~
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and

~CT [t] � 0 and ~a[t] � 0 (37)
o 0

for the creep and relaxation test, respectively ; € It], ~Et 1 in (36) depend

parametrically upon a , and alt], cJ [tI in (37) depend parametrically upon e .

If we specialize (1) for the creep test (& = 0, a = a0) and perform the

differentiation, with respect to a , we obtain

FIt] — ~€It ] HIt]
a~ It] = ~a 

‘382
0 m [a

0,
e [t] ]

where

àmla0, € It]]
FIt] =m [a

0,
e It]I — (a

0—g Ie ItJ]) (39)

and

~m [a ,e It] ]
H It] =ut [a0, € It] ]g

’ [€ It]] + (a — gle ft]]) 
0 (40)

Equation (38) is integrated to obtain

_____ = 
FIT] 

2 
(exp — S HEx] 

2 dx) d’ro ~ tn fa
0,

eI’r]I T m [a0, € [ x ] ]

+ ~ € [0] 
exp - 5 HIx] 

2 dx (41)
o 0 mIa0,c Ix]

]

where in (41) t=0 corresponds to the initiation of creep, € 1 01 ~ 0.

When ~
€ [t— 0] 

� 0 from (38) and (39) we see that sufficient conditions for

satisfying (36) are

FIt] � 0 and FIt] — H It] � 0 . (42)

Following similar procedures for relaxation, sufficient conditions for

satisfying (37) are, respectively

I
I

- —-—— .= - .  --- —-- .- -3 - - - -- ~~~~
.-— - - - -- -- 

-
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~kE aI t ] , € I
P It] =k ( a l t I ,€ 0]g ’[e01 + (a(ti —g t e ]) � 0 (43)

and
PIt] — Q[t] � 0 (44)

with

~k [a It], e~l
QIt] =k[a[ti,c0

] — (alt] —g (€]) . (45)

The examination of (39) - (42) shows that the no crossing conditions (36) and (37)

are in general not satisfied.

From Eqs. (38) - (41) and their counterparts for relaxation, we obtain the

limits for large times

_____ 
(F[t]~\ 1

lim = lim ~.—i  = (46)
~~~~ ~~~ ~~~~~ 

‘.H [tl i g [C [co] J

lint ~~ [t] = 0 (4 7)

u r n  ~a [t] 
= u r n  (L[ ~~.L) = g’ 1€ [co] ] (48)

t-.co 
~~~~ 

t_ .co QI t I

lim = 0 . (49)
t-.~

where we have assumed that in creep or relaxation (cr-g) - 0  as t -. =. There-

fore (46) and (47) do not hold for those creep conditions for which there is

no solution to the equation

a = g I e ]  (50)

i .e. , in those cases for which (1) reproduces secondary or tertiary creep;

see also Appendix III.

I
I
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Useful Specializations of (1)

A) The Functions m E  I and k ( 1 are Selected to Depend Upon (a - g Ic ])

*1 .and g [C] =E (Modulus of Elasticity)

Because of this special dependence a and € have no independent influence

on the behavior of (1). For a given loading rate the properties of (1) are

determined by the value of a-gte] alone, and curves equidistant to gEe]

are curves alor~g which the properties of solutions of (1) are identical.

Specifically with reference to (26 ) we see that the slope for a given

constant è is constant on a curve cY-gIc ] = const. Moreover for a—g [€] = o

= E irrespective of the strain rate. The slopes of all of the curves de-

parting from the curve a g[e] are all equal to the elastic modulus. (It is

however , not possible to depart from a—g I€ ] =0 by creep or relaxation, as

can be easily verified from (1).) With the a—g I€ ] dependence in the functions

the curve a=g I€] assumes special significance since along it the behavior

predicted by (1) is the same as at the origin .

While every solution curve of (1) for constant or variable strain rate

must become parallel to gI€] [see (18) and (20)] only the a-g [€] dependence

in k models a nonlinear dependence between 0’ and &-gI€] . Consider now two

tests with 0’l 
and and associated stresa reSponses &~~ and &2, respectively.

From (19) we obtain the ratio

..‘ A(a1 
(‘]~~ — g Io]~ 

) k (a
2 

(co] — g (co]]

(51)
(a
2
[co] — g [co] )k (a 1

1co] — g lco]] 
~2

and therefore (&
1
_glco ]) and (&

2
_ g I~x~]) are related in a nonlinear fashion.

For any other choice of the a, € dependence in the functions ml I and k F I

*
We recall the conditions k (OD) — finite and k positive.

I
I
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we have for &~~ 1°’] = &2 ~~~~ = co~ k [&~ I~] co] = k [&
2 

[co] co] ~so that the ratio (51)

reduces to
& I c o l _ g l c o ]  0’1 r i  (52 )
~~~~~~~~~~~~ ~

‘2

Only the &—g [€I dependence in k, therefore, yields a nonlinear rela-

tion between the differences &-gI€] at large strain in tensile tests with

various strailn rates. Such nonlinear relations are usually observed in real

tensile tests. Figures 7a , 7b, 9 and 10 illustrate this property .

The limits (51) and (18) are valid only at € -. co~ However, the stress

ratio and the stress slope are rapidly asymptotic to these limiting values

1 (51) and (18)], as shown in Figs.2, 5 through 10. Moreover, the (a-g[€])

dependence appears to enhance the rate with which these limits are obtained .

From (24) and (25) we obtain in the case of an instantaneous change of

strain rate

_g [coI
= (E_g ’(co] )0’ (53)

k(cY
A
[co] _g[co]] 2

and
a

B E ]  _ g Ico I

A 
= (E — g’ Ico] . (54)

kla
B
[co] _glcol]

From our previous r strictions upon the function k we have &A 
= 

~B 
in this

case.

A *Aside from insuring that = E for a-g[€ ] =0, setting g’[el = E has the

following consequences for the test involving a change in the strain rate,

see Fig.3. Suppose the function g[c] has the shape of a stress—strain diagram

as shown in Fig.1, then we know from (16) and (18) that approaches g’I€]

in a constant strain (stress) rate test. If -~~~~~~ 

~ g
’ [€] and g’ (€1 < < E  then

* A A A

If a1 (co] and a2 [co] are finite then k(a1 [co] , co] may not be equal to
k[cY2 [co],co]. This may occur if g’(co] — 0.

I
- — .— - --- - - - - ,-? -- - - - - - .  -r_ —- - a .~as.-S — - —.-.-.. - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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the second term on the right-hand side of (30) is close to the value E. If

the strain rate is now increased instantaneously by one or seve ral orders of

magnitude then the slope (€-e
~~) in (31) will be approximately equal to E

since the second term in (31) becomes negligible. Therefore the instantaneous

change in slope predicted by (1) is approximately the elastic slope E. The

above si. cialization insures that this behavior is independent of strain.

B) The Derivatives m’ = 
g~~fl < 0 amd k ” < 0d (a - gEe])

This specialization provides a sufficient condition for

� g ” I€ ] in a tensile loading provided € > Q , E~~~~~
’[€ ]  � g’[Cj and € = 0 ’

~f(t] � 0 in a creep test provided g
’[e] � 0

b~It] � 0 in a relaxation test

� 0 in (41), the creep curves do not cross, i.e.,

€ It] � € ltI
~ 

for a
1 

> a~ > 0 and every t.
1 2

~a[tI � 0 the relaxation curves do not cross and art] � alt]
€ €

0 1 2
for €

1 
€
2~

Further the no crossing conditions for the creep rate curves (
[t 1 

� o)
and for the relaxation rate curves (

~.~~t] � o) appear to be satisfied.

It can be demonstrated that for k either constant or depending upon

a - gI € ] with = k’ � 0 and ‘[€] =E , � g ’[€ I provided € = ~~ > 0 ,

as shown in Figs.2, 7a, 7b and 10. However , if the dif ference g ’— g ’ is not

*always positive or if gEe] is nonlinear, then wavy stress—strain curves may

result as shown in Fig.5. In proceeding from Fig.2 to Fig.5 only g was altered

from a linear to a nonlinear relation. Further examples of causes of waviness

are given in Figs.6 and 8. If k is neither constant nor dependent on a-g [€]

*1wavy stress-strain curves may also occur even if g is constant as shown in

I
I

- - - ~~ -  -~~a- —- - - -~~~ 
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Fig.9. Note that waviness disappears when k is made to depend on a—g [€ l as

was done in Fig. 10.

Waviness of the stress—strain curves can also be obtained by making the

equilibrium curve g “wavy” as demonstrated in Figs,7a and 7b. In both cases

g = Ee.  The g-curve is constructed in such a way as to resemble the yielding

of carbon steel. In Fig.7a k = 3 . 2 s. The k—function of Fi g . 7b taken from 116 ]

depends on a-g~c] and the Er—curves for various strain rates follow the g[€ ]-

curve until the dip disappears at 0’ = 10~~ S
1
. Owing to the constant  value-’

of k only the &-curve for 0’ = ~~~~ 5 follows gEe] in Fig.7a. The curves for

the higher strain rates are coincident with g = Ec. They will become parallel

to g (€] at Er -g le] values determined by (19). These values are beyond the

limits of Fig.7a.

A comparison of Figs.7a and 7b shows the importance of the a-gEe]-

dependence in k to provide for an early “locking in” and for the nonlinear

spacing of the Er-curves obtained at various 0’, see Eq. (51).

I
Discussion

The model (1) subject to specializations A) and B) reproduces in a unified

way many of the characteristic features of metal deformation behavior generally

referred to as isothermal dynamic plasticity or viscoplasticity. These include

• Uniform slope at the origin

• Linear elastic or linear viscoelastic behavior at small strain (stress)

• Initial elastic response upon a jump in strain rate

• Nonlinear spacing of the stress-strain curves at various strain rates

• Elastic response for very fast loading

• Existence of an equilibrium stress-strain curve

• Creep and relaxation.

I
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In addition to the qualitative arguments discussed herein we demonstrate in 116]

by numerical experiments which simulate constant rate loadings with various

stress (strain) rates, with tension—tension cycling and creep and relaxation

conditions that the general appearance of the numerically obtained responses

is very reminiscent of the actual behavior of metals. We therefore see that

a nonlinear viscoelastic constitutive equation such as (1) subject to the

specializations’ A) and B) can reproduce viscoplasticity very well. However,

the correspondence ceases to hold if a-gIel would change sign. At this point

modifications will be necessary such as discussed in [ill . A forthcoming

paper will address this subject.

Making the functions depend upon a-gIe] renders (1) in essence an

overstress model [17, 18] which has been considered many times [19]. However,

the previous use of the overstress concept is either tied to the usual de-

composition of the strains into elastic and plastic parts and the yield surface

concept 118,191 or tovery specific functions [17]. Here we have demonstrated

that none of these concepts are necessary to reproduce metal behavior quali-

tatively as long as there is no substantial unloading involved. Moreover

creep and relaxation are included in (1) in a unified way. Also we have

explored and shown the limits obtained from (1) for various extreme conditions

which to the authors ’ knowledge has not been done befr re.

We note that isochronous creep curves which are a commo n way of repre-

senting creep data in engineering 120,211 can be obtained from (1). Iso-

chronous creep curves are a vs. € cross—plots (where is a parame ter) of

regular creep curves for Constant creep time.

- - - - - - -. - . - ... ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Considering (41) and the derivation of it we see that it represents for

t = constant the reciprocal of the slope of the isochror~ous creep curve.

Condition (42) ensures that ~~~
tI � 0; i.e. , the slope of the isochronous
0

creep curve will be positive. IsochronouS creep curves of metals [20] and

plastics 121] have this property.

In the interpretation of the limit obtained in (46) the condition t - c o

refers physically to a long-time creep curve. The limit (46 ) indicates that

the slope of this infinitely large time isochronous creep curve is

da
= g’t€ tt col ] (55)

from which we infer that it must be equal to the slope of the equilibrium

stress—strain curve. This inference is only valid if the stress 0 is such
0

—l
that € (t=co) g [a]; see Eq. (50) and Appendix III.

These reflections suggest then that g l e ]  could ~e obtained from a long

ter~i isochronous creep curve, say for t = 300 , 000 hours for the case of metals ,

and could he obtained from [201 .

In the above we have concentrated on the specializations A) and B) which

appear to be appropriate for metals. However, other properties of (1)

resulting from different specializations are of interest for the modelling

of other materials .

* *,If g and g are selected such that g -g ’ < 0 then inverse strain rate

sensitivity results such as that shown in Fig.6 which is obtained from Fig.5

*by interchanging g and g. It can be seen that the “slow” stress-strain curves

are above the fast ones, reversing the trend of Fig.5 and the relation (15).

-- .._ - - .—e-a —— * - ~~~~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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I
It is also possible to have “classical” strain rate sensitivity over one

I strain interval “ reverse” strain rate sensitivity over another interval

by making g and g intersect once . The resulting stress—strain curves are

I shown in Fig. 8.

In Figs . 2 , 5 - 7 the initial slopes of g and g are made equal. In these

cases all the curves are initially coincident and we have initial linear

I elastic behavior . In Fig .8 , g ’ > g’ ini t ial ly (k is constant in this

example ) ,  and therefore a linear viscoelastic behavior results .

( Figure 8 also illustrates that all curves with nonvanishing strain rate

have initially the same slope as stated in (17).

- If we begin a creep (& 0) or a relaxation (~~=0) test on any stress-

I strain curve then strain (stress) would always move towards g. Specifically

in Fig.6 , a reversal of the usual situation would occur, since according to (1)

during relaxation the stress would increase and the strain would decrease

during creep. In Fig.8 a mixed behavior would be obtained with the usual

I pattern as long as a > g and the reverse behavior for a < g. Finally Fig. 9

I illustrates that wavy stress-strain curves may also be obtained by constructing

special k—functions not included in specialization A).
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APPENDIX I

Fast and Slow Loading in Stress Control

To simulate a tensile test under constant stress rate ~ we set

a = ~t . (Al)

The solution of (4)  subject to (Al) is designated by

= eIa ;~~J = € [t]~~~~~ (A 2)

and ~ is considered a parameter .

Substitution of (Al ) into (4) using (A2) and (12) yields

= 
a~~[a] 

+ 

~ 
{ 3. 

— ~~~~~ ( x~~lx1 ~}{exp_i ~ 

gE~~(sJ] ds} dx .
g[C fa]] 

~
, ~ ‘ r € i ~~ii 

dx gI€ [x])’ x e [s]m [s,€ Es]]

(A3)

For extremely slow loading ~ -. 0 and from (A3)

~ [a;0] = 
o~~[a;0] 

(A4 )
gEe (a; 0]

Consequently

a= g[~~fa;01] (A5)

where €fa;0] lim eIa ;~ ]. Similarly , we define ~ (a ;c~] E u r n  ~ [a;~S] and

proceeding formally we obtain
a

A I’ dx
= 
4 * 

(A6 )
o g ’l~ ;co]1

and therefore

a g~~ fa(co]1] . (A7)

. *Comparison with the results for strain control shows that gte] and g(e)

are the response curves for infinitely slow and infinitely fast loading ,

respectively, irrespective of the type of loading.

I
I
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APPENDIX II

Limiting Value of at Large Strains

Equation (16) may be written as

A 
J~ [~~

‘[x] _ g ’(x13exp (~~~ kI&[:],s]) 
dx

da *, 
0

= g [e] — 

€ 
. (A8 )

~k E & [ e ] , € ]exp  
°‘ k I o t:] , s]

*1If g [co], g [~] and klco,co] exist (A8) will become an indeterminate expression

for € ~~~~~~ We apply L’ Hospital’ s rule and obtain

g’E°’] .

We want to emphasize that (A9 ) is valid only if the values of the functions

at in finit ~ exist and are finite.

—~= 
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APPENDIX III

Creep Behavior

We subject (4) to the following stress history

& = c r [ t ]  0 � t < t  with a lt ] = a
o 0 0

t � t
0

where & is some smooth function of time. The total strain for t � t is
0

given by

€ ( t] = ~ (~,
&tT] + m [a [TJ , € l T ] ] )~~~~(S ~~~~~~ 

d~ (AlO)
0 g [ C f T ] ]  T

which may be written as

t

I’ g[€[s]]ds S
€ [t] = exp — J € [slm[a ~~ ~~~ 

[t
a
]

t 0
0 t to

f I f g l e [ s] ] d s  “~ 
dT 

(All)+ a j ~exp — J € ( s]m la  , c I s ] ] )  m E a 0, € E T ] 3
t ‘1~
0

Performing the limit t -, for (All) using the methods of Appendix II shows

€ lco]a
u r n  € (t] = 

I [co] J (Al2)
t—co g

so that

= g 
l [a~1 . (A13)

g—inverse in (A13) may not exist. In this case lim e = ~ and creep does not
t-.co

terminate. (Such a case would be represented by the condition g ’(€ )  = 0 for

c > l and a >  g [~ J .) In the case where the inverse of g in (A13) exists,

creep terminates at c = g
1
[aJ and we have only primary creep.

I
I
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It is easily seen from (All) that è (t) � 0 for positive e where equality

applies only when a = g [C [c o] ].

The above concerns a constant stress creep test. We will now consider

a constant load creep test. Then we enforce a continuous stress history with

a possible j ump discontinuity in & at t = t
0

a = &(t) 0 � t < t with a(t ) = a
0 0 0

for t � t
0

C A  C A
0 0  • 0 0 ’

C =—  and~~~~= - ——— A

where A represents the cross section (which is in general a function of time

through € )  of the bar at time t and A = A It0] -

Substitution of the above into (4) yields for t � t

ert i  = exp - S g[c [s] ] ds 
{e [t0

]

~ e (s]m~—~— , e [s]]

t to
r u ( 1 A \f r g[e [s]]ds ‘Vi.

+ C A j  A~~~ , a A  - 

*1 
A e xp_ J  CA  JJ d’r

t I 0 ~~~ r u  Ag (e[T]] I r~~~I 
0 0  r ho ~j— ~--— , ilij € L S , U9 1 ,  € LSJ

J

(Al4 )

If A[t] and Alt ]  are f ini te  and A (col # 0, the limit for large times of (A14)

is obtained. Proceeding formally, with c (col lim € It] , we have

CAo o  
— 

g(e(co]]
A (co] 

- 
CA

1 — 
, C [cc] ]A (co]

A (co] [e (coJ J

I 
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Again there may not be a finite € (co] which satisfies (A15). In this case the

creep strain becomes infinite. If , however, a finite value of the strain

exists then for a given a at t = co the constant load creep strain is greater

than or equal to the constant stress creep strain since A < 0 and g ’ > 0.

Physically this means that the strain in a constant load creep test is larger

than the one in a constant stress creep test.

Equations (34), (All) and (A14 ) show a dependence on the difference

a-gle ] attained at the start of the relaxation or creep test. This difference

is influenced by the loading rate up to the strain (stress) level at which the

relaxation (creep) test starts. This difference is then multiplied by a factor

with exponential decay in time . It is therefore clear that the evolution in

time of the theoretical relaxation (creep ) curves is influenced by the loading

rate up to the strain (stress) level of the test. Experiments show such in-

fluences (23].

It is important to note that both the constant stress and constant load

creep test involve an additional integral term compared to the relaxation

case, see Eqs . (34) and (All) , (A 14) .

The case of secondary and tertiary creep will be examined in detail in

the future.

I
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FIGURE CAPTIONS

Figure 1 Schematic Showing the Solution Properties of Eq. (13). For
given gt e ]  and g [ €]  the curve for all strain rates are between
these two curves.

Figure 2 Integration of (13). For convenience k = const = 16 (units of
time). Strain rates have the reciprocal time dimension of k.
The behavior predicted in (18) and (19) is obtained for low
strain rates. Owing to the constant k large values of a-gte ]
are necessary at high strain rates before the limit is reached.
The & ( c ;Q ’]  curves confirm Eqs . (14) , (15) and (18).

Figure 3 Schematic Showing the Response to a Change in Strain Rate .
At A the strain rate is changed from 0’i 

to 0’2 
with 0’2 

> 0’i
.

Note that we distinguish between the & - € and the a-time
responses.

Figure 4 The Influence of the a-Dependence of the k-Function on the
Relaxation Behavior at €~~ = .6%. Curve 1 is for linear
relaxation k = 16. In curve 2 the k-function used in Fig .lO
is employed to yield nonlinear relaxation.

Figure 5 Stress-strain diagrams at Various Strain Rates Measured in
Reciprocal Time Units of k . Same conditions as in Fig.2
except for a change in ~~. Wavy stress—strain curves result for

~ome strain rates because of the particular combination of
g and k.

*Figure 6 Same as Fig.5 Except the Representation of g and g have been
Interchanged, such that g~ - g’ � 0 . As a consequence the curves
for low strain rate are above those for high strain rate
simulating inverse strain rate sensitivity.

Figure 7a Stress-strain Behavior for k = 3.2 s and a g-curve with Dip.
Note that the curves for strain rates of l0 2 and 100 s 1 follow
the straight line of the a-curve within the limits of the graph .

Figure 7b Same as Fig.6a Except that k in Units of Seconds and Taken
from [16] is Made to Depend on O—g [e]. The nonlinear spacing
of the &—curves at various strain rates (in ~

_ 1
] are obvious,

see Eq. (51). Note that the dip disappears at high strain rates.

* *~ FFigure 8 The Curves g and g Cross and g - g � 0 Initially but Changes
Sign at Some Strain,after which ~ ‘-g ’ � 0. Therefore a
combination of normal and inverse strain-rate sensitivity is

F *1obtained. Although g 
4
0) 

~~
‘ g (0) all the curves depart from

the origin with slope g’(O) , Eq. (17).

-- 
- - - ~~~~~~——  - —- 0 - - - -- - - - - __________________



Figure 9 A Particular Limiting Choice of k so that k (co] = 0,
~onsequently & - g [ci -~ 0 for all Strain Rates. Although
g’= E ’~const. wavy stress—strain curves result.

Figure 10 Same as Fig.9 Except k is Made to Depend on a- gEe] without
Changing the Form of the Function . The waviness disappears
(see specialization B) and the curves “ lock in” .
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